A simplified Monte Carlo algorithm considering large‐angle scattering for fast and accurate calculation of proton dose

نویسندگان

  • Taisuke Takayanagi
  • Shusuke Hirayama
  • Shinichiro Fujitaka
  • Rintaro Fujimoto
چکیده

PURPOSE The purpose of this study is to improve dose calculation accuracy of the simplified Monte Carlo (SMC) algorithm in the low-dose region. Because conventional SMC algorithms calculate particle scattering in consideration of multiple Coulomb scattering (MCS) only, they approximate lateral dose profiles by a single Gaussian function. However, it is well known that the low-dose region spreads away from the beam axis, and it has been pointed out that modeling of the low-dose region is important to calculated dose accurately. METHODS A SMC algorithm, which is named modified SMC and considers not only MCS but also large angle scattering resembling hadron elastic scattering, was developed. In the modified SMC algorithm, the particle fluence varies in the longitudinal direction because the large-angle scattering decreases residual range of particles in accordance with their scattering angle and tracking of the particles with large scattering angle is terminated at a short distance downstream from the scattering. Therefore, modified integrated depth dose (m-IDD) tables, which are converted from measured IDD in consideration of the fluence loss, are used to calculate dose. RESULTS In the case of a 1-liter cubic target, the calculation accuracy was improved in comparison with that of a conventional algorithm, and the modified algorithm results agreed well with Geant4-based simulation results; namely, 98.8% of the points satisfied the 2% dose/2 mm distance-to-agreement (DTA) criterion. The calculation time of the modified SMC algorithm was 1972 s in the case of 4.4 × 108 particles and 16-threading operation of an Intel Xeon E5-2643 (3.3-GHz clock). CONCLUSIONS An SMC algorithm that can reproduce a laterally widespread low-dose region was developed. According to the comparison with a Geant4-based simulation, it was concluded that the modified SMC algorithm is useful for calculating dose of proton radiotherapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

Calculation of Absorbed Glandular Dose using a FORTRAN Program Based on Monte Carlo X-ray Spectra in Mammography

Introduction: Average glandular dose calculation in mammography with Mo-Rh target-filter and dose calculation for different situations is accurate and fast. Material and Methods: In this research, first of all, x-ray spectra of a Mo target bombarded by a 28 keV electron beam with and without a Rh filter were calculated using the MCNP code. Then, we used the Sobol-Wu parameters to write a FORTRA...

متن کامل

Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...

متن کامل

Dose Assessment of Eye and Its Components in Proton Therapy by Monte Carlo Method

Introduction Proton therapy is used to treat malignant tumors such as melanoma inside the eye. Proton particles are adjusted according to various parameters such as tumor size and position and patient’s distance from the proton source. The purpose of this study was to assess absorbed doses in eyes and various tumors found in the area of sclera and choroid and the adjacent tissues in radiotherap...

متن کامل

Calculation of the Equivalent Dose of the First and the Most Important Secondary Particles in Brain Proton Therapy by Monte Carlo Simulation

Introduction: Due to nuclear interactions between the tissues and high-energy protons, the particles, including neutrons, positrons, and photons arise during proton therapy. This study aimed at investigating the dose distribution of proton and secondary particles, such as positrons, neutrons, and photons using the Monte Carlo method. Material and Methods:<...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018